Einführung in die Paläozeanographie

Klima

Die Synthese des Wetters über einen Zeitraum, der lang genug ist, um dessen statistische Eigenschaften zu bestimmen

KLIMAFAKTOREN:

Prozesse und Zustände, die zur Entstehung,

Aufrechterhaltung und Veränderung des Klimas führen.

Sonnenstrahlung (solares Klima)

Strahlungs- und Wärmehaushalt

Land- und Meerverteilung (maritimes/kontinentales Klima)

Höhe über NN (Gebirgsklima)

Zusammensetzung der Erdatmosphäre (Spurengase,

Aerosole, Wasserdampf)

Ozean- und Atmosphärische Zirkulation

Landvegetation und biologische Produktion

Clockwise circulation Counterclockwise coming out of high-pressure regions circulation going into low-pressure regions

D

Northern hemisphere

Forcing low latitudes

Cane and Clement (1999) AGU Monograph

NOAA/PMEL/TAO

Innertropical Convergence Zone

TMI Monthly Averaged Precipitation Rate: August , 1998

The Thermohaline Circulation

(after W. Broecker, modified after E. Maier-Reimer)

Atmosphere & Ocean Circulation

Atmosphere & Ocean Circulation

and station rainfall. This figure is done for annual averages of both the index and the rainfall data from 47 years. The pattern of the Atlantic SST is very similar to the NAO pattern: i.e. during strong phases of the NAO, there are strong westerlies and north-easterlies, colder SST, and thus the ITCZ is further south. When ITCZ is further south, the correlation with Tropical Dipole Index (TDI) is negative, less precipitation over the Sahel region and more precipitation along the coastline in the Gulf of Guinea, more precipitation in the Nordeste Brazil as well (Y. Kushnir and G. Krahmann, 1998, personal communication). **Climate Variability in the Atlantic Sector**

Possible interconnections of three major climate phenomena

from CLIVAR website

ML/G4/99'

Carbon exchange rates (gigatons/year)

Paleo-CO₂ and productivity in the ocean

Relation to atmospheric CO₂ Proxies Problem of Quantification Late Quaternary Variations

References	
Books	Fischer & Wefer 1999, Use of Proxies in Paleoceanography: Examples from the South Atlantic, 546pp, Springer-Verlag,
	Berlin Heidelberg.
	Summerhays, Emeis, Angel, Smith, & Zeitschel 1995, Upwelling in the Ocean: Modern Processes and Ancient Records, 422pp, Dahlem Konferenzen, Wiley, Chichester.
	Berger, Smetacek, & Wefer 1989, Productivity in the Ocean: Present and Past, Dahlem Workshop Reports, Life Sciences Research Report 44, John Wiley & Sons, Chichester, New York.
Journals	PALEOCEANOGRAPHY, ORGANIC GEOCHEMISTRY, PALEO3, GEOCHIMICA COSMOCHIMICA ACTA, GLOBAL BIOGEOCHEMICAL CYCLES.
Websites	http://usjgofs.whoi.edu/ http://www.obs-vlfr.fr/cd_rom_dmtt/start_france_jgofs.htm http://seawifs.gsfc.nasa.gov/SEAWIFS.html

Greenhouse Effect ?

http://www.ipcc.ch/

Greenhouse Effect ?

(a) Global atmospheric concentrations of three well mixed greenhouse gases
Greenhouse Effect ?

http://www.ipcc.ch/

IPCC Scenarios

Model results in context with natural variability

Global Carbon Cycle

The table and figure give an accounting of where the different forms of carbon are located on earth ! Note that 10^{15} g = 1 billion tons = 1 gigaton = 1**Pedagram**):

In the atmosphere, CO₂ is 99.6% of the total

http://www.visionlearning.com

Figure 19.1 Sketch of the natural global carbon cycles (adapted from SCOR 1990).

Type of primary productivity

$Ca^{2+} 2HCO_{3}^{-} => CaCO_{3} + CO_{2} + H_{2}O_{3}$

$H_20 + CO_2 => (Photosynthesis) CH_2O + O_2$

Important: C_{org}/CaCO₃ ratio of total PP

Ocean Colour

Northern Summer

Northern Winter

Pigment Concentration

The Global Biosphere Series

SEAWIFS IMAGE GALLERY

SEAWIFS Project NASA/Goddard Space Flight Center and ORBIMAGE

Phytoplankton

Atmosphere - Ocean CO₂ exchange

Takahashi et al. 2002

modified after http:// homepage.mac.com/uriarte/carbon13.html and iae.org

Internationale Standards für Isotopen-Zusammensetzungen von H, C, O, S, N

Standard	Standard	Element
PDB	<u>B</u> elemnitella americana aus der <u>P</u> ee <u>d</u> ee Formation der Kreide South Carolina	C, O
SMOW	<u>S</u> tandard <u>M</u> ean <u>O</u> cean <u>W</u> ater	H, O
CD	Troilit (FeS) Eisenmeteorit aus dem <u>D</u> iabolo <u>C</u> anyon	S
N ₂ (Luft)	Luft	Ν

Calculation of paleo PCO_2 in the ocean

Biological Pump Effect

Berger et al. 1989

RADIOCARBON DATING

Method, Instruments, Calibration,

and Application in the Marine Environment

References	
Books	Libby 1955 (2nd edition), Radiocarbon Dating, University of Chicago Press, Chicago. Bard & Broecker 1992, The Last Deglaciation: Absolute and
	Radiocarbon Chronologies, NATO ASI Series I, Springer Verlag, Berlin, Heidelberg, New York.
	Bradley 1992 (2nd edition), Quaternary Paleoclimatology, Methods of Paleoclimatic Reconstruction, Chapman & Hall, London.
	Faure 1977, Principles of Isotope Geology, John Wiley & Sons, New York
Journal	RADIOCARBON
Websites	http://www.radiocarbon.com/ http://www.c14dating.com/

Radiocarbon Method

The radiocarbon dating method was developed by a team of scientists led by the late Professor Willard F. Libby of the University of Chicago between 1947 and 1952.

Libby later received the Nobel Prize in Chemistry in 1960:

"for his method to use Carbon-14 for age determinations in archaeology, geology, geophysics, and other branches of science."

"Seldom has a single discovery in chemistry had such an impact on the thinking of so many fields of human endeavour. Seldom has a single discovery generated such wide public interest."

Today, there are over **130** <u>radiocarbon dating laboratories</u> around the world producing radiocarbon assays for scientific fields including hydrology, atmospheric science, oceanography, geology, palaeoclimatology, archaeology and biomedicine.

Radiocarbon Method

There are three principal isotopes of carbon which occur naturally - C12, C13 (both stable) and C14 (unstable or radioactive). These isotopes are present in the following amounts C12 - 98.89%, C13 - 1.11% and C14 - 0.00000000010%. Thus, one carbon 14 atom exists in nature for every 1,000,000,000,000 C12 atoms in living material. The radiocarbon method is based on the rate of decay of the radioactive or unstable carbon isotope 14 (14C), which is formed in the upper atmosphere through the effect of cosmic ray neutrons upon nitrogen 14. The reaction is: **14N + n => 14C + p** (Where n is a neutron and p is a proton).

The 14C formed is rapidly oxidised to 14CO2 and enters the earth's plant and animal lifeways through photosynthesis and the food chain. The rapidity of the dispersal of C14 into the atmosphere has been demonstrated by measurements of radioactive carbon produced from thermonuclear bomb testing. 14C also enters the Earth's oceans in an atmospheric exchange and as dissolved carbonate (the entire 14C inventory is termed the **carbon exchange reservoir** (Aitken, 1990)). Plants and animals which utilise carbon in biological foodchains take up 14C during their lifetimes. They exist in equilibrium with the C14 concentration of the atmosphere, that is, the numbers of C14 atoms and non-radioactive carbon atoms stays approximately the same over time. As soon as a plant or animal dies, they cease the metabolic function of carbon uptake; there is no replenishment of radioactive carbon, only decay.

Libby, Anderson and Arnold (1949) first discovered that this decay occurs at a constant rate. They found that after 5568 years, half the C14 in the original sample will have decayed and after another 5568 years, half of that remaining material will have decayed, and so on (see figure 1 below). The **half-life** (*t* 1/2) is the name given to this value which Libby measured at 5568 ± 30 years. This became known as the **Libby half-life**. After 10 half-lives, there is a very small amount of radioactive carbon present in a sample. At about 50 - 60 000 years, then, the limit of the technique is reached (beyond this time, other radiometric techniques must be used for dating). By measuring the C14 concentration or residual radioactivity of a sample whose age is not known, it is possible to obtain the countrate or number of decay events per gram of Carbon. By comparing this with modern levels of activity (1890 wood corrected for decay to 1950 AD) and using the measured half-life it becomes possible to calculate a date for the death of the sample. As 14C decays it emits a weak beta particle (*b*), or electron, which possesses an average energy of 160keV. The decay can be shown: **14C => 14N + b**

Thus, the 14C decays back to 14N. There is a quantitative relationship between the decay of 14C and the production of a beta particle. The decay is constant but spontaneous. That is, the probability of decay for an atom of 14C in a discrete sample is constant, thereby requiring the application of statistical methods for the analysis of counting data.

Natural Carbon Isotopes		¹² C ~ 98.89 % of total	
¹⁴ C ~ 0.00	0000000010 % of	13 C ~ 1.11 % of total total (1 part per Trillion)	
Radionuclides	Half-life (years)	Cosmogenic nuclides	
¹⁰ Be	1,500,000	Cosmogenic nuclides are isotopes that are produced by interaction of cosmic rays with the nucleus of the atom. Shown are radioactive isotopes of the elements beryllium.	
¹⁴ C	5,730		
²⁶ AI	730,000		
³⁶ CI	301,000	carbon, aluminum, chlorine, calcium,	
⁴¹ Ca	100,000	thousands to millions of years. They	
129	16,000,000	are produced in meteorites and other extraterrestrial materials, in the	
Libby's half-life time is used by convention !!		Earth's atmosphere, and on the solid	

surface of the earth

!! Libby's half-life time is used by convention !!

¹⁴ C	5,558 ±30

Natural Distribution

Production and Decay

$${}^{1}_{0}\mathbf{n} + {}^{14}_{7}\mathbf{N} \longrightarrow {}^{14}_{6}\mathbf{C} + {}^{1}_{1}\mathbf{H}$$

$${}^{14}_{6}\mathbf{C} \longrightarrow {}^{14}_{7}\mathbf{N} + \boldsymbol{\beta}^{-} (160 \text{ keV})$$

Atmosphere, Biosphere, and Oceans contain about: 42 x 10¹² tons of ¹²C 47 x 10¹⁰ tons of ¹³C but only 62 tons of ¹⁴C

The estimated ¹⁴C production rate of 7.5 kg/year is assumed to be by the annual global decay to keep the global ¹⁴C budget constant Law of Decay

$$A = A_0 e^{-\lambda t}$$

$$ln (A/A_0) = -\lambda t \implies t = 1/\lambda \ln(A_0/A)$$

A: measured ¹⁴C activity, e.g., in dpm/gC A_0 : natural ¹⁴C activity at the time of incorporation λ : half-life time (t_{1/2}), t: time passed

Law of Decay

Summary

Archaeological Sites

http://www.ipp.phys.ethz.ch/research/ experiments/tandem/posters/

19.9.1991

1992

Kalenderalter: 3350 bis 3110 vor Chr.

http://www.ipp.phys.ethz.ch/ research/experiments/ tandem/posters/

http://www.ipp.phys.ethz.ch/research/experiments/tandem/posters/

IGBP-PAGES website

Marine Archives

Institut fuer Umweltphysik, Uni Heidelberg

Marine Archives

Globigerina bulloides

Planktonic Foraminifera/ Mediterranean/ Levantine Basin/

Globerinoides ruber

Images from a thesis by Jens Kallmayer (yr. 1998 SOCRATES visitor from Bremen) For more information about these research projects contact Dr.Eelco.J.Rohling (Pages created and maintained by Barry Marsh

SOES)

Marine Archives

Neogloboquadrina pachyderma (right coiling)

Globigerinoides sacculifera

Counting techniques

β - DECAY in dpm per g C

- # in gas counters (Geiger principle) C is converted to CH₄, CO₂ or Acetylene and electron emmission is measured by voltage
- # with liquid scintillation with conversion of C into an organic liquid (e.g., Benzene) and photochemical reaction (flashes of light) in the liquid

PROBLEMS:

Large samples needed, grams of pure C

Long measure times of hours to days for old samples

Shielding of instruments against natural background radioactivity

→ AMS ¹⁴C Measurements

Principle Accelerator Mass-Spectrometer

Accelerator Mass-Spectrometer "mini version"

ETH Zürich Website

Fig. 3. Age models for the sediment cores GeoB 3104-1, 3129-1/3911-3, and 3202-2, derived from linearly interpolated and calibrated ¹⁴C AMS dates. The cores GeoB 3117-1, 3176-1, and 3229-2 were linked to the established stratigraphies correlating various sediment parameters.

Τ	a	b)	le	2	
-					

¹⁴C Ages obtained by accelerator mass spectrometry (AMS) dating of monospecific samples ^a

Lab. ID	Core	¹⁴ C AMS	\pm Error	Calibrated
	depth	age	(yr)	age
	(cm)	(yr B.P.)		(cal. yr B.P.)
GeoB 3104-	-1			
KIA 653	8	2660	± 50	2880
KIA 1857	20	5740	± 60	6450
KIA 1856	52	9660	± 50	11140
GrA 3719	87	12580	± 100	14760
KIA 1855	97	12960	± 90	15230
GrA 3720	172	16120	± 160	19150
KIA 651	209	20540	+350/-330	24280
GeoB 3129-	-1 and 39	11-3		
KIA 2576	22	1830	± 30	1910
KIA 2575	52	3610	± 50	3980
KIA 2574	62	3820	± 30	4230
KIA 2573	90	5880	± 40	6610
KIA 655	119	6510	± 60	7330
KIA 654	207	9160	± 80	10200
KIA 1872	241	9650	± 60	11130
KIA 1871	307	9910	± 60	11450
KIA 1861	329	10430	± 60	12090
KIA 1860	452	10610	± 70	12320
KIA 1859	491	11600	± 70	13540
KIA 2614	523	12040	± 70	14090
KIA 2612	548	12380	± 50	14510
KIA 2613	543*	12680	± 80	14880
KIA 2611	648^{*}	14160	± 110	16720
KIA 1858	665*	16920	± 90	20140
GeoB 3202-	-1			
KIA1850	14	3010	± 30	3280
KIA1849	34	6420	± 40	72.30
KIA1848	69	12400	± 70	14540
KIA1847	99	18090	± 100	21590

^a *G. sacculifer* in the fraction of 250–500 μ m, analyses performed at the Leibniz-Labor AMS facility in Kiel, Germany [37] and the Center for Isotope Research, Groningen, Netherlands. GrA = Groningen; KIA = Kiel. The ¹⁴C ages were corrected for a reservoir effect of 400 years [38] and transformed into calendar years [40].

Samples from core GeoB 3911-3.

Calibration: Marine Environment

Calibration by tree rings "Dendrochronologie"

Calibration by tree rings "Dendrochronologie"

Bard et al. 1992

Causes for

deviations of radiocarbon ages from calendaric ages

1. Variations in the rate of ¹⁴C production in the atmosphere

Variations in cosmic ray flux due to solar activity# Variations in cosmic ray flux due to changes in the geomagnetic field# 14C production by nuclear weapon testing and nuclear techniques

 Variations in the rate of exchange of ¹⁴C between various reservoirs and changes in the relative CO₂ content between reservoirs # Changes in CO2 solubility and dissolution, atmosphere-ocean # Changes in terrestrial biosphere (biomass), humidity, human activity # Ocean productivity and upwelling, and deep circulation

- 3. Variations in the total amount of CO_2 in the atmosphere, biosphere, and hydrosphere
 - # Volcanism and other mechanisms of CO₂ lithosphere degassing
 - # Release or burial in sedimentary reservoirs
 - # Combustions of fossil fuels

IntCal13

RADIOCARBON, Vol 55, Nr 4, 2013, p 1869–1887 © 2013 by the Arizona Board of Regents on behalf of the University of Arizona

INTCAL13 AND MARINE13 RADIOCARBON AGE CALIBRATION CURVES 0-50,000 YEARS CAL BP

Paula J Reimer^{1,2} • Edouard Bard³ • Alex Bayliss⁴ • J Warren Beck⁵ • Paul G Blackwell⁶ • Christopher Bronk Ramsey⁷ • Caitlin E Buck⁶ • Hai Cheng^{8,9‡} • R Lawrence Edwards⁸ • Michael Friedrich^{10,11} • Pieter M Grootes¹² • Thomas P Guilderson^{13,14} • Haflidi Haflidason^{15†} • Irka Hajdas¹⁶ • Christine Hatté^{17†} • Timothy J Heaton⁶ • Dirk L Hoffmann^{18‡} • Alan G Hogg¹⁹ • Konrad A Hughen²⁰ • K Felix Kaiser^{21,22*} • Bernd Kromer¹¹ • Sturt W Manning²³ • Mu Niu⁶ • Ron W Reimer¹ • David A Richards²⁴ • E Marian Scott^{25†} • John R Southon²⁶ • Richard A Staff^{7‡} • Christian S M Turney²⁷ • Johannes van der Plicht^{28,29}

Reimer et al. 2013

IntCal13

Reimer et al. 2013

IntCal13

